
Exploring Low-level Physics Understanding
through Data-Centric Computer Vision

Brian Nlong Zhao
briannlongzhao@gmail.com

1 Introduction
Computer vision has become pivotal in AI research, demonstrating remarkable abilities to
analyze visual data and create new instances that mirror existing distributions. These vision
models are widely applied across fields like image and video recognition, 3D spatial under-
standing, and especially visual content creation, offering automation opportunities in content
creation, data augmentation, and simulation. State-of-the-art vision models are predomi-
nantly data-driven and trained on massive datasets. For example, text-to-image diffusion
models such as DALL·E and Stable Diffusion, are trained on extensive text-image pairs,
enabling them to generate images based on textual descriptions. Other visual foundational
models, for example Segment Anything Model (SAM), benefits from a well-designed data
engine that enhances the the quality of the data at a massive scale.

While state-of-the-art vision models have shown promising results in tasks such as static
image segmentation and generation, it remains unclear whether these models possess
the ability to understand low-level dynamics and physics and generate physically
consistent dynamic visuals, where scenes and objects are expected to exhibit
motion. This means that the visual models that incorporate a time dimension may not
adhere to physics laws or reflect the natural dynamics of our daily observations. For instance,
non-physics-aware object tracking models may not understand fundamental laws of inertia
and will easily mixing up tracks when encountering two similar objects moving across each
other. Humans or animals may have inconsistent limb proportions, impossible postures, or
distorted features in generated visual contents, if not using a predefined and constrained
3D model. Visual generation models may also fail to represent realistic dynamics, such as
object motion and deformation when encountering gravity or external forces. The lack of
adherence to natural laws results in physically implausible outputs, undermining the utility
of vision models in applications involving high degrees of realism. Thus, my research
aims to delve deeply into how well current visual models understand low-level
physics and dynamics for visual analysis and generation, and how to enhance
these abilities in vision models, particularly through a data-centric approach.

2 Proposal
The questions that I therefore wanted to ask are, can these limitations in physics understand-
ing be addressed by carefully curating training datasets to emphasize dynamic movements,
thereby enabling visual models to learn more accurate statistical representations of physical
dynamics? And based on this, does scaling-up the data allow models to better capture and
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generalize the underlying laws of physics in visual scenarios? To explore these questions, I
propose a research plan that is structured around the following key steps.

2.1 Evaluation of Low-level Physics
The first step is to identify systematic tasks and evaluation methods that reveal the short-
comings of current vision models in understanding low-level physics. This involves, first,
clearly defining how to determine if a vision model is capable of understanding low-level
physics. There exist some datasets focusing on the ability of vision models to learn high-
level physics properties. For example [7] collects a video dataset of the motions of various
objects in different classical physics scenarios, such as objects sliding off a ramp or bouncing
off from a surface, and also proposes some basic physical properties for machine learning
model to learn and evaluate, such as material, volume, coefficient of friction, etc. It would
therefore be interesting to extend similar ideas to evaluate how state-of-the-art vision models
grasp low-level physical properties from images and videos. By low-level physics, it means
beyond object level of motion, for example, pixel or voxel level, such as lighting, object
deformation after interaction, fluid flow, etc. [12] demonstrates a vision model’s ability to
understand lighting and shadow by using inpainting to reconstruct a masked area, accurately
predicting the shadow of an object, and further evaluating the model’s ability by probing
with different 3D properties. This concept could be extended by testing additional physical
properties in video models, for example, using future frame prediction models to anticipate
the movement and deformation of objects, given initial frames of objects with different states
and materials. Additionally, systematic evaluation methods are required to assess the ca-
pability of models in understanding low-level physics in generated visual content. While
benchmarks like [3] offer metrics for video generation, they focus on broader objectives such
as motion classification accuracy, optical flow, and semantic consistency. Therefore, it is
necessary to develop evaluation benchmarks specifically targeting low-level physical proper-
ties in generated videos and dynamic 3D models, focusing on aspects like object persistence
and deformation consistency, and their correlation with forces.

2.2 Data-driven Perspective
With proper evaluation methods in place, the next step is to test the hypothesis that data
scale and quality are critical for a vision model’s ability to understand low-level physics
through extensive experimentation. Significant efforts have been made to incorporate physi-
cal priors or constraints into vision models, such as SMPL [4] and SMAL [18] which propose
parameterized, predefined 3D models for humans and animals to model posture and move-
ment with physical constraints. Other methods, like [17], introduce additional constraint
terms to mitigate unnatural motions, such as foot skating or slippage artifacts in 3D mod-
els. [11] uses a projection module to transform unnatural generated motions into physically
plausible space in diffusion steps. While these approaches focus on integrating physics con-
straints, exploring these challenges from a data-centric perspective could be compelling. One
initial approach would be to use existing datasets and frameworks to design experiments that
control both the size and quality of the data. By varying these factors, we can analyze how
they affect the model’s performance using the proposed benchmarks, thereby gaining insights
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into the role data plays in enabling models to grasp low-level physics. If it can be demon-
strated that data scale and quality are indeed crucial, the next step would involve collecting
and curating datasets specifically tailored to improve vision models’ understanding of low-
level physics and dynamics. One potential approach to gathering large-scale, dynamic data
is to leverage the vast amount of publicly available, unlabeled video content from the web.
The focus would then shift towards developing specialized data scraping and processing tools
for specific tasks, such as assembling a dataset of videos in-the-wild for reconstructing and
generating motion of humans and objects. Such kind of tools would need to incorporate,
for example, off-the-shelf detection, segmentation, and tracking models, along with carefully
designed filtering and cleaning mechanisms, to ensure that the data is object-centric with
rich and clean information of motion and dynamics.

2.3 Data-efficient Learning of Low-level Physics
After collecting and curating datasets for the evaluation tasks, the next step may involve
designing specific representation and machine learning algorithms that can more effectively
capture the underlying data distribution, thereby enhancing the model’s ability to recognize
and understand low-level physics. A typical scheme for a vision model to learn physical
information from video is through an inverse rendering process, where models are designed
to extract physical information of an object, for example, implicit latent parameter [6], or ex-
plicit shape and motion representations [5], and reconstruct the video through differentiable
physics engine or rasterization methods for direct supervision and optimization. An inter-
esting direction that I would like to explore is to insert low-level physics information into the
explicit representation of the learned shape and motion. Popular explicit 3D representations
such as mesh and 3D Gaussian splatting [2] allow for efficient rendering of 3D scenes and ob-
jects that consist of small shape units onto a 2D image plane. Taking 3D Gaussian splatting
as example, each Gaussian has parameters such as position, variance, color, and opacity,
allowing explicit representation of small portions of the object in 3D space. By introducing
additional physical parameters to 3D Gaussian splatting or similar representations, it may
become possible to learn object dynamics through inverse rendering from video data. For
instance, embedding each Gaussian with a deformation-related coefficient would enable easy
inference of the stiffness of objects from their 3D representation, such as Young’s modulus
used in [9, 13] and spring-mass model used in [16]. Additionally, introducing coefficients
related to shear and elasticity would possibly clarify which parts of the object can move
and how they would respond to external interactions or forces. This type of representation
can be further enhanced by integrating self-supervisory dense features, such as those from
DINO [1], to establish low-level associations between videos of different instances, as demon-
strated in [8] and [10]. This approach could enable learning the dynamics of deformable or
movable objects, facilitating easier editing and generation with the learned representation,
if sufficient high-quality video data is available. Ultimately, the goal of these steps would
be to enable computer vision models to understand low-level dynamics and physics of how
different objects deform, move, behave, in the real-world.
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3 Past Experiences
My past research experience aligns closely with my proposal to tackle the problem of physics
understanding of computer vision from a data-driven perspective. During my junior year, I
was lucky to work under Professor Lin Zhang’s guidance at Tongji University, where I started
to learn basics of computer vision by joining some projects related to image feature matching
and super-resolution. During my senior year and master’s study at the University of South-
ern California, I had the opportunity of working with Dr. Yunhao Ge in Professor Laurent
Itti’s group. I initially joined a project focused on synthesizing detection and segmenta-
tion image data using image generation models—an efficient data augmentation technique
that improved detection and segmentation model performance beyond the state of the art.
In addition, I led the project DreamDistribution [14], a novel and efficient prompt-tuning
method for visual generation models that better captures custom image data distributions
for diverse personalized image and 3D generation. During my master’s program, I also had
the opportunity to intern at Microsoft Research Asia, where I led a project [15] to create a
large-scale dataset for novel report generation tasks, reflecting real-world clinical scenarios.
Both [14, 15] are have led to research paper submissions to ICLR 2025. Currently, I am
a research assistant in Professor Jiajun Wu’s group at Stanford University, working under
the guidance of Dr. Shangzhe Wu. My current project involves collecting video from the
web for animal motion reconstruction and generation, which closely aligns with my proposal
of leveraging large-scale publicly available data for physics-aware visual understanding and
generation. These experiences have provided me with a strong foundation in computer vision
research, positioning me well to tackle the challenges of investigating and improving physics
understanding in computer vision models from data-centric approaches.

4 Conclusion
This research line aims to investigate and improve how computer vision models can under-
stand natural dynamics and physics, especially at a low and beyond object level. By address-
ing the current shortcomings in physical plausibility, the proposed work has the potential to
significantly enhance the realism of dynamics of AI understanding and AI-generated visual
content, making it more applicable and trustworthy in real-world scenarios.
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